A role for phospholipase C activity but not ryanodine receptors in the initiation and propagation of intercellular calcium waves.
نویسندگان
چکیده
Mechanical stimulation of a single cell in an airway epithelial culture initiates an increase in intracellular Ca2+ concentration ([Ca2+]i) that propagates from cell to cell as an intercellular Ca2+ wave. These Ca2+ waves appear to require an increase in intracellular inositol 1,4,5-trisphosphate (IP3) concentration ([IP3]i) in the stimulated cell and are propagated between cells by the diffusion of IP3 through gap junctions. To test the hypothesis that the activation of phospholipase C (PLC) contributes to the elevation of [IP3]i and initiation of an intercellular Ca2+ wave, changes in [Ca2+]i induced by mechanical stimulation were measured by digital fluorescence microscopy in the presence of the PLC inhibitor, aminosteroid U73122. Following exposure to U73122 mechanical stimulation elevated [Ca2+]i of the stimulated cell, but did not initiate the propagation of an intercellular Ca2+ wave. By contrast, in the presence of U73343, a similar aminosteroid that does not inactivate PLC, mechanical stimulation increased the [Ca2+]i of the stimulated cell and initiated an intercellular Ca2+ wave. U73122 also blocked the elevation of [Ca2+]i of airway epithelial cells in response to ATP, a P2-receptor agonist that activates PLC to elevate [IP3]i and [Ca2+]i. In addition, the propagation of intercellular Ca2+ waves was not affected by the ryanodine-receptor agonists, caffeine or ryanodine. The hypotheses that: (1) an elevation of [IP3]i is required to initiate intercellular Ca2+ waves; (2) mechanical stimulation activates PLC; and (3) Ca2+ wave propagation in airway epithelial cells involves Ca2+ release from intracellular stores primarily via IP3 receptors are supported by these results.
منابع مشابه
Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes.
The mechanisms involved in the initiation and the propagation of intercellular calcium signaling (calcium waves) were studied in cultured rat astrocytes. The analysis of calcium waves, induced either by mechanical stimulation or by focal application of ionomycin, indicated that initiation was dependent on the presence of external calcium. In addition, pharmacological experiments indicate that i...
متن کاملIntercellular calcium waves in cultured enteric glia from neonatal guinea pig.
Enteric glia are important participants in information processing in the enteric nervous system. However, intercellular signaling mechanisms in enteric glia remain largely unknown. We postulated that intercellular calcium waves exist in enteric glia. Primary cultures of enteric glia were isolated from neonatal guinea pig taenia coli. Intracellular calcium in individual cells was quantified with...
متن کاملVesicular ATP Is the Predominant Cause of Intercellular Calcium Waves in Astrocytes
Brain astrocytes signal to each other and neurons. They use changes in their intracellular calcium levels to trigger release of transmitters into the extracellular space. These can then activate receptors on other nearby astrocytes and trigger a propagated calcium wave that can travel several hundred micrometers over a timescale of seconds. A role for endogenous ATP in calcium wave propagation ...
متن کاملRegulation of slow wave frequency by IP(3)-sensitive calcium release in the murine small intestine.
Slow waves determine frequency and propagation characteristics of contractions in the small intestine, yet little is known about mechanisms of slow wave regulation. We propose a role for intracellular Ca(2+), inositol 1,4,5,-trisphosphate (IP(3))-sensitive Ca(2+) release, and sarcoplasmic reticulum (SR) Ca(2+) content in the regulation of slow wave frequency because 1) 1,2-bis(2-aminophenoxy)et...
متن کاملA novel form of cellular communication among thymic epithelial cells: intercellular calcium wave propagation.
We here describe intercellular calcium waves as a novel form of cellular communication among thymic epithelial cells. We first characterized the mechanical induction of intercellular calcium waves in different thymic epithelial cell preparations: cortical 1-4C18 and medullary 3-10 thymic epithelial cell lines and primary cultures of thymic "nurse" cells. All thymic epithelial preparations respo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 108 ( Pt 7) شماره
صفحات -
تاریخ انتشار 1995